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Outline

• Background / Motivation
– Unique Challenges in Analysis of High-

Temperature Thermosetting Polymers
• Measuring Tg the Traditional Way

– Effect of Heating Rate
– Effect of Thermal Cycling

• Thermochemical vs. Thermomechanical Stability
• Alternative Ways to Find Tg

– Extrapolation of diBenedetto equation
– Extrapolation of Fox equation
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Cyanate Esters:  Ideal for Studies of
High-Temperature Thermosets

4

• Single species reaction chemistry is “cleaner” than epoxy resin and well-understood; 
enables development of superior predictive models; readily catalyzed to cure at 
reasonable temperatures, providing a wide and tunable processing window

• Amenable to many different composite fabrication processes – filament winding, 
RTM, VARTM, compression molding, pultrusion; easy to make pure resin samples

• Minimal net shrinkage during cure; virtually no volatile released; good flame, smoke, 
and toxicity characteristics 

• A wide variety of monomer architectures are available
• Highly relevant to propulsion systems, particularly those with short operational 

lifetimes; used in everything from microelectronics to space probes

BADCy

Δ

Typical DSC Trace of CEs
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The Role of High-Temperature 
Polymers in Aerospace Propulsion

5

• In general, for chemical propulsion, higher operating temperatures provide improved 
efficiency and better performance

• Organic materials in propulsion structures offer lower density, thus increasing 
delivered power per unit weight, but most often be insulated from the high-
temperature portions of the propulsion system

• Higher maximum use temperatures for organic materials therefore reduce the need 
for insulation, allowing for more significant decreases in weight when using organic 
materials

• High-temperature polymer development therefore focuses on retaining mechanical 
properties over operationally relevant time scales at the highest possible temperature

Photo credits:  (clockwise from left:  
NASA, FAA, US Navy (Marvin E. 
Thompson), US Coast Guard.  All images 
are public domain or freely distributed.
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Cyanate Ester Monomers Used
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Catalyzed systems use:
160 ppm Cu(II) as Cu(II)AcAc  with 2 phr 
nonylphenol,
All samples were melted, blended, and de-
gassed for 30 min. prior to cure in silicone 
molds under N2, cure schedules as indicated

“BADCy”

“LECy”

“SiMCy”

“FlexCy”

“PT-30” (n=1-2)
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Traditional Approach to Finding 
Maximum Use Temperature

• Use an oscillatory test of stiffness on a pure resin plaque or a composite
• Heat slowly to minimize temperature gradients and thermal lag in the sample
• Monitor the storage component of stiffness (as a proxy for total stiffness), define Tg 

as the temperature at which it “falls off a cliff”, subtract a factor of safety (up to 50 °C), 
and set the maximum use temperature equal to the result

• Test samples after exposure to various environmental factors (oxygen, water, etc.) to 
determine appropriate “knock down” for a given application
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10°C/min

Tg ~ 275°C

Primaset® LECY, Catalyzed

FS

Why was this sample 
heated at 10 °C / min.?

Cured 150 °C for 1 hr + 
210 °C for 24 hr 
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Effect of Heating Rate on Apparent 
Glass Transition Temperature

• Cyanate ester Tg values are usually sensitive to cure temperature, yet this data seems to 
suggest that cure conditions do not make much difference

• Low heating rates are supposed to make the data more reliable, but this data looks 
decidedly less reliable
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2°C/min

Tg ~ 275°C

Primaset® LECY, Catalyzed Cured 185 °C for 3 hr
Storage should not 

display a deep minimum
Twin peaks in loss 
and tan delta in a 
single component 

system is very 
unusual
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Effect of Heating Rate on Apparent 
Glass Transition Temperature

• Peak shapes are drastically different at the higher heating rate, and the primary 
transition is less pronounced
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5°C/min

Tg ~ 275°C

Primaset® LECY, Catalyzed Cured 185 °C for 3 hr
Storage should not 

display a deep minimum Loss and tan delta 
peaks are 

unusually broad
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Effect of Heating Rate on Apparent 
Glass Transition Temperature

• Not until the heating rate reaches 10 °C does the “as-cured” glass transition 
temperature become readily discernible; in this case the true effect of cure conditions 
on the glass transition temperature is observed
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10°C/min

Tg ~ 230°C

Primaset® LECY, Catalyzed Cured 185 °C for 3 hr
Peak shape still a 

bit unusual



DISTRIBUTION A:  Approved for public release.  Distribution is unlimited.  

-50
0

50
100
150
200
250
300
350

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T g
or

 T
cu

re
(°C

)

Conversion

diBenedetto equation
Required cure temperature (12 hrs)
Measured Tg

Why Does Heating Rate Make 
a Difference?

• Cyanate esters (and many other high-temperature thermosets) are “unusual” in 
that their glass transition temperatures can far exceed their maximum cure 
temperatures.  

• This phenomena results from the steep dependence of glass transition 
temperature on conversion (via the diBenedetto equation) in systems that have 
the desirable qualities of high thermomechanical stability (high Tg-100) and ease of 
processing (low Tg-0)
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Primaset® LECY, Catalyzed

 

χλ
λχχ

)1(10100

0

−−
=

−
−

−−

−−

gg

gg

TT
TT

λ = 0.4
Tg and conversion measurements are by DSC

diBenedetto equation

χ= conversion, λ = empirical factor (can 
be derived from heat capacities)

Increase in Tg due to in-situ cure can be 
faster than the rate of heating



DISTRIBUTION A:  Approved for public release.  Distribution is unlimited.  

Effect of Cycling on Measured Tg

• In contrast to “as-cured” glass transition temperatures, fully cured glass transition 
temperatures can be easy to measure, provided that the thermal cycling does not cause 
chemical degradation.  

• The effect of final cure temperature on fully-cured glass transition temperature has been 
previously noted (Goertzen, W. K.; Kessler, M. R. Composites: Part A 2007 38, 779)
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Primaset® LECY, Catalyzed
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Effect of Chemical Degradation

• A complete glass transition was observed for neither system due to chemical 
degradation, which forced early termination of the experiment 

• Though from a “use temperature” perspective, the dynamic mechanical technique is 
sufficient, from a basic science perspective it would be highly useful to separate the 
effects of mechanical softening from those due to chemical degradation
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Dry Samples – PT-30 FlexCy – No catalyst

50°C/min

PT-30 Tg
measured at 400 

°C by Marella
(thesis, Drexxel

Univ., 2008)
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Estimate of Tg via diBenedetto 
Equation

• For all three cyanate esters studied, extrapolation of the diBenedetto equation with  
λ = 0.4 (as determined experimentally from blend studies) showed agreement to 
within 15 °C.  This technique is limited by the difficulty in separating DSC signals 
due to cure and degradation at very high temperatures.
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All samples include catalyst
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Estimate of Tg via Fox Equation

• Fit to Fox equation appears to be good.  Significant extrapolation is required.
• The use of modulated DSC may allow for measurement of higher Tg values (limited 

to about 350 °C in regular DSC).
• Recent cyanate ester blend studies have shown deviation of up to 15 °C from values 

predicted by Fox equation when pure component Tg values are known, thus this 
technique needs additional validation to establish its accuracy.
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Estimated FlexCy
Tg = 400 ±10 °C

All Tg values based on DSC 
step transition mid-point; no 
catalyst included
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Summary
• Though essential for aerospace applications, the determination of maximum

use temperatures for high-temperature thermosetting polymers presents
challenges not encountered in more conventional composite matrix resins.

• Characterization of glass transition temperatures by traditional dynamic
mechanical analysis methods at low heating rates can be severely affected
by in-situ cure when maximum cure temperatures are below glass transition
temperatures.

• Dynamic mechanical methods do not distinguish between thermochemical
and thermo-mechanical instability, even though such distinctions may be
important for studies of structure-property relationships.

• Alternative methods of estimating glass transition temperatures, based on
extrapolation of the Fox equation or the diBenedetto equation, may be used
to estimate glass transition temperatures that are higher than actual
exposure temperatures, thereby avoiding difficulties associated with in-situ
cure or thermochemical degradation.
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